ORTHOSIPHOL D AND E, MINOR DITERPENES FROM ORTHOSIPHON STAMINEUS

Yoshio Takeda,* Takashi Matsumoto, Hiromitsu Terao, Tetsuro Shingu, \dagger Yukako Futatsuishi, \ddagger Toshihiro Nohara§ and Tetsuya Kailmoto§

Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770, Japan; \dagger Faculty of Pharmaceutical Sciences, Kobegakuin University, Nishi-ku, Kobe 673, Japan; \ddagger Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770, Japan; §Faculty of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862, Japan
(Received 22 September 1992)
Key Word Index-Orthosiphon stamineus; Labiatae; orthosiphol D; orthosiphol E; pimarane diterpene.

Abstract

From the aerial parts of Orthosiphon stamineus, two new diterpenes, orthosiphols D and E were isolated together with the known rosmarinic acid, sinensetin, scutellarein tetramethyl ether, salvigenin and orthosiphols A and B. The structures of the new compounds were elucidated mainly by spectroscopic methods.

INTRODUCTION

Kumis-kuching (whole plant of Orthosiphon stamineus BENTH.) is widely used as a diuretic. Some constituents of this plant, such as monoterpenes [1], hexoses [2], organic acids [2, 3], triterpenes [4], saponins [5], flavonoids [6-8], rosmarinic acid [9], chromene [10], and orthosiphols A, B and C [11] have been reported. During the course of our investigation on the biologically active constituents of Labiatae plants, we examined the constituents of the aerial part of Orthosiphon stamineus cultivated in Okinawa Prefecture and isolated two new diterpenes, orthosiphols D (1) and E (2) together with the known compounds, orthosiphol A (3), orthosiphol B (4) [11], sinensetin (5) [8], scutellarein tetramethyl ether (6) [6], salvigenin (7) [12] and rosmarinic acid (8) [13]. This paper describes the structure elucidation of the new diterpenes.

RESULTS AND DISCUSSION

Orthosiphol D (1), $[\alpha]_{D}-96^{\circ}(\mathrm{MeOH})$ was obtained as an amorphous powder and the molecular formula was determined as $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{9}$ based on its HR mass spectrum. It contained two acetoxyl groups [$\delta 1.96$ and 2.03 (each $3 \mathrm{H}, \mathrm{s}$); $\delta 20.1$ and 21.1 (each q), 168.9 and 169.2 (each $s)$], a benzoyloxyl group [$\delta 7.48(2 \mathrm{H}, t, J=7.7 \mathrm{~Hz}), 7.62$ $(1 \mathrm{H}, b r t, J=7.7 \mathrm{~Hz})$ and $8.06(2 \mathrm{H}, d d, J=7.7$ and 1.3 Hz); $\delta 133.5(s), 128.6(2 \mathrm{C}, d), 129.8(2 \mathrm{C}, d), 129.8(s)$ and 165.7 (s)], a vinyl group $[\delta 5.96(1 \mathrm{H}, d d, J=17.6$ and 11.1 Hz$)$ $\left(\mathrm{H}_{\mathrm{b}}\right), 4.96(1 \mathrm{H}, d, J=17.6 \mathrm{~Hz})\left(\mathrm{H}_{\mathrm{f}}\right)$ and $5.16(1 \mathrm{H}, d, J$ $=11.1 \mathrm{~Hz})\left(\mathrm{H}_{e}\right) ; \delta 115.8(t)$ and $\left.140.0(s)\right]$, an isolated carbonyl group [$\delta 208.4$], four tertiary methyl groups

[^0][$\delta 1.14,1.16$ and 1.17, 1.50 (each $3 \mathrm{H}, \mathrm{s}$); $\delta 19.7,21.5,25.9$. and 26.7 (each q)] and a tertiary hydroxyl group [$\delta 2.93$ (1 H, br $d, J=1.3 \mathrm{~Hz}$); $\delta 75.2(s)]$, an α, β-unsaturated carbonyl group [$\delta 6.61(1 \mathrm{H}, s)\left(\mathrm{H}_{2}\right) ; \delta 142.3(d), 142.2(s)$ and 196.2 (s)] and two secondary carbinyl groups [$\delta 5.47$ $(1 \mathrm{H}, b r t, J=2.8 \mathrm{~Hz})\left(\mathrm{H}_{d}\right)$ and $5.74(1 \mathrm{H}$, br $t, J=6.4 \mathrm{~Hz})$ $\left(\mathrm{H}_{\mathrm{c}}\right) ; \delta 69.2$ and 70.5 (each $\left.d\right)$] as partial structures based on its ${ }^{1} \mathrm{H}$ (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra. The ${ }^{13} \mathrm{C}$ NMR spectrum of orthosiphol D (1) further showed signals due to two methylene groups, two methine groups and three quaternary carbon atoms. These spectral data, coupled with the consideration on the co-existence of orthosiphols A (3) and B (4), suggested that orthosiphol D is tricyclic and has a pimarane skeleton as a basic skeleton. The structure between C-9 and C-13 (partial structure A) was elucidated by following the cross peaks $\mathbf{H}_{\mathrm{h}}[\delta 2.77(1 \mathrm{H}, d d, J=7.9$ and 1.3 Hz$)] \rightarrow \mathrm{H}_{\mathrm{c}} \rightarrow \mathrm{H}_{\mathbf{i}}[\delta 2.61$ $(1 \mathrm{H}, d d, J=15.7$ and 6.6 Hz$)] \rightarrow \mathrm{H}_{\mathrm{k}}[\delta 2.24(1 \mathrm{H}, d d, J$ $=15.7$ and 1.1 Hz$)]$ in the ${ }^{1} \mathrm{H}-\operatorname{COSY}$ spectrum. Another partial structure B consisting of the $\mathrm{C}-5-\mathrm{C}-7$ portion of the molecule was also elucidated by following cross peaks $\mathrm{H}_{\mathrm{d}} \rightarrow \mathrm{H}_{\mathrm{m}}[\delta 1.93(1 \mathrm{H}, m)] \rightarrow \mathrm{H}_{e}[\delta 2.17(1 \mathrm{H}, m)] \rightarrow \mathrm{H}_{\mathrm{j}}[\delta 2.33$ $(1 \mathrm{H}, d d, J=13.2$ and 1.9 Hz)]. The location of an isolated carbonyl group and a tertiary hydroxyl group was elucidated at C-14 and C-8, respectively, based on the analysis of the results obtained from ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long range $\operatorname{COSY}(J$ $=10 \mathrm{~Hz}$) (Fig. 1). Namely, cross peaks due to two and three bond couplings for the carbon ($\delta_{c} 75.2$) having a tertiary hydroxyl group were observed from the proton signals due to $\mathrm{H}_{\mathrm{d}}(\mathrm{H}-7)$ and $\mathrm{H}_{\mathrm{m}}\left(\mathrm{H}_{1}-6\right)$. On the other hand, cross peaks for the carbon ($\delta 208.4$) were observed from the proton signals due to $\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{k}}$, and that at $\delta 1.16\left(\mathrm{H}_{3}\right.$ -17). The stereochemical correlation between the H-9 and $\mathrm{OH}-8$ was also suggested to be the trans-orientation from the observation of the cross peaks between $\mathrm{H}-9$ and the hydroxyl group at $\mathrm{C}-8$ via W -letter interaction. Thus,

Table 1. ${ }^{1} \mathrm{H}$ NMR data of orthosiphols $\mathrm{D}(1)$ and $\mathrm{E}(2)$ (measured in CDCl_{3} at
400 MHz)

\mathbf{H}	1	2
1	$6.61(s)$	$6.26(s)$
5	$2.33(d d, J=13.2$ and 1.9 Hz$)$	$2.24(b r s, J=13.5 \mathrm{~Hz})$
6	$1.93(m)$	$1.92(b r d, J=13.7 \mathrm{~Hz})$
	$2.17(m)$	$2.13-2.22$
7	$5.47(b r t, J=2.8 \mathrm{~Hz})$	$5.47(b r s)$
9	$2.77(d d, J=7.9$ and 1.3 Hz$)$	$2.72(d, J=7.7 \mathrm{~Hz})$
11	$5.74(b r t, J=6.4 \mathrm{~Hz})$	$5.79(b r t, J=6.3 \mathrm{~Hz})$
12	$2.24(d d, J=15.7$ and 1.1 Hz$)$	$2.13-2.22$
	$2.61(d d, J=15.7$ and 6.6 Hz$)$	$2.63(d d, J=15.8$ and 5.8 Hz$)$
15	$5.96(d d, J=17.6$ and 11.1 Hz$)$	$5.97(d d, J=17.7$ and 10.7 Hz$)$
16	$4.96(d, J=17.6 \mathrm{~Hz})$	$4.93(d, J=17.7 \mathrm{~Hz})$
	$5.16(d, J=11.1 \mathrm{~Hz})$	$5.13(d, J=10.7 \mathrm{~Hz})$
17	$1.16(s)$	$1.17(s)$
18	$1.14(s)$	$1.14(s)$
19	$1.17(s)$	$1.17(s)$
20	$1.50(s)$	$1.49(s)$
OH	$2.93(b r d, J=1.3 \mathrm{~Hz})$	$2.89(m), 5.87(m)$
Ac	$1.96(s), 2.03(s)$	$2.01(s)$
Bz	$7.62(1 \mathrm{H}, b r t, J=7.7 \mathrm{~Hz})$	$7.62(t, J=7.7 \mathrm{~Hz})$
	$7.48(2 \mathrm{H}, t, J=7.7 \mathrm{~Hz})$	$7.50(2 \mathrm{H}, t, J=7.7 \mathrm{~Hz})$
	$8.06(2 \mathrm{H}, d d, J=7.7$ and 1.3 Hz$)$	$8.11(2 \mathrm{H}, b r d, J=7.7 \mathrm{~Hz})$

R
1 Ac
2 H

$\mathbf{R}^{1} \quad \mathbf{R}^{2}$
5
OMe

$\begin{array}{lll} & \mathbf{R}^{\mathbf{1}} & \mathbf{R}^{\mathbf{2}} \\ \mathbf{3} & \mathrm{Ac} & \mathrm{H} \\ \mathbf{4} & \mathrm{H} & \mathrm{Ac}\end{array}$

8
the location of the functional groups around rings B and C was elucidated. The location of the remaining functional group, an α, β-unsaturated carbonyl group, is restricted to ring A. The location of the carbonyl group and a
proton on a double bond was elucidated to be at C-3 and C-1, respectively, from the facts that cross peaks for the signal [$\delta_{c} 196.2$ (s)] from the proton signals due to H_{s}, 18$\mathrm{H}_{3}(\delta 1.14)$ and $19-\mathrm{H}_{3}(\delta 1.17)$ and those for the signal

Table 2. ${ }^{13} \mathrm{C}$ NMR data of orthosiphol D (1) and E (2) (measured in CDCl_{3} at 100 MHz)

Carbon		1	2
1		142.3	126.3
2		142.2	143.7
3		196.2	199.9
4		44.5	43.4
5		44.8	45.2
6		22.9	22.7
7		70.5	70.7
8		75.2	75.2
9		45.9	46.5
10		40.4	39.7
11		69.2	69.1
12		39.0	39.3
13		48.0	48.1
14		208.4	208.7
15		140.0	140.7
16		115.8	115.0
17		26.7	26.6
18		21.5	21.8
19		25.9	25.9
20		19.7	20.6
OH			
OAc		20.1, 21.1	21.0, 169.1
		168.9, 169.2	
OBz	$1 '$	133.5	133.5
	$2 '$	128.6 (2C)	128.7 (2C)
	$3{ }^{\prime}$	129.8 (2C)	129.8 (2C)
	4	129.8	130.1
	5	165.7	165.8

Partial structure A

Partial structure B

[$\delta 44.8$ (C-5)] from the proton signal due to H_{a} were observed in the ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long range COSY ($J=10 \mathrm{~Hz}$) spectrum. The substitution at C-2 by an acyloxy group was inferred from the chemical shift [$\delta 142.3$ (d)] of the signal assigned to C-1 [14]. The stereochemistry was

Fig. 1. Summary of the results of ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long range COSY spectrum ($J=10 \mathrm{~Hz}$) for orthosiphol $\mathrm{D}(1)$.

Fig. 2. Summary of the results of ${ }^{1} \mathrm{H}$-NOESY spectrum for orthosiphol D (1).
determined from the results obtained by ${ }^{1} \mathrm{H}-\mathrm{NOESY}$ experiment (Fig. 2). Thus, the structure of orthosiphol D was elucidated as mentioned except for the location of three acyloxyl groups, i.e. two acetoxyl and a benzoyloxyl group. An acetoxyl group was determined to be located on C-7 from the fact that H_{d} showed a cross peak with a carbonyl group of an acetoxyl group in the ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$-long range COSY spectrum. The location of a benzoyloxyl group and another acetoxyl group were suggested to be at $\mathrm{C}-11$ and $\mathrm{C}-2$, respectively, based on the consideration of the co-existence of orthosiphol A (3) and B (4).

Orthosiphol E (2) $[\alpha]_{D}-100^{\circ}$ (MeOH) was also obtained as an amorphous powder. The molecular formula was determined as $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8}$ and is $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$ less than that of orthosiphol $\mathrm{D}(1)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) of orthosiphol $E(2)$ showed the presence of a secondary acetoxyl group, a secondary benzoyloxyl group, two hydroxyl groups, an isolated carbonyl group, a vinyl group, an α, β-unsaturated carbonyl group and four tertiary methyl groups and are very similar to those of orthosiphol D (1). However, compound 2 had two hydroxyl groups and one acetoxyl group while compound 1 possessed one hydroxyl and two acetoxyl groups. The signal due to $\mathrm{H}-1$ moved upfield by 0.35 ppm and the signals due to carbons of ring A changed (Table 2) in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. These spectral data suggested that orthosiphol E has a structure which
corresponds to the 2-O-deacylated derivative of orthosiphol D (1). Acetylation of orthosiphol E (2) with a mixture of acetic anhydride and pyridine gave orthosiphol $D(1)$. Based on the above findings, the structures of orthosiphols D and E were elucidated as 1 and 2, respectively.

EXPERIMENTAL

General procedures. ${ }^{1} \mathrm{H}$ NMR: 400 MHz ; ${ }^{13} \mathrm{C}$ NMR: 100 MHz . TMS as int. standard. EIMS: 70 eV ; CC: silica gel $60(0.040-0.063 \mathrm{~mm}$, Merck); TLC and prep. TLC: silica gel $60 \mathrm{~F}_{254}$ plates (0.25 and 0.5 mm in thickness, respectively.

Plant material. The plant material used was cultivated in Okinawa prefecture, Japan.

Isolation procedures. The methanolic extract obtained from the aerial parts of Orthosiphon stamineus BENTH. $(1.1 \mathrm{~kg})$ was concd in vacuo. The residue (81 g) was dissolved in $90 \% \mathrm{MeOH}(330 \mathrm{ml})$ and the soln was partitioned between n-hexane ($300 \mathrm{ml} \times 3$). The 90% MeOH layer was concd in vacuo. The residue was suspended in $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{ml})$ and the suspension was extracted with EtOAc ($300 \mathrm{ml} \times 3$). After being washed with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{ml} \times 3$), the EtOAc extract was dried and evapd in vacuo to give a residue (17.73 g) which was chromatographed over silica gel (600 g) with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ as eluant with increasing MeOH content. $\mathrm{CHCl}_{3}(1 \mathrm{I})$, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (49:1) (3 l), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1) (2 1), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (93:7) (21), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (9:1) (21), $\mathrm{CHCl}_{3}-\mathrm{MeOH} 17: 3$ (2.51), $\mathrm{CHCl}_{3}-\mathrm{MeOH} 4: 1$ (2.51), $\mathrm{CHCl}_{3}-\mathrm{MeOH} 7: 3$ (2.51) and MeOH (21) were passed successively collecting 200 ml fractions (Column I).

Fr. nos $16-32$ gave a residue (5.885 g) which was chromatographed over silica gel (80 g) with $\mathrm{CHCl}_{3}-$ MeOH ($49: 2$) collecting 100 ml fractions (Column II). The residue (285 mg) from fr. no. 2 was further purified by silica gel (20 g) chromatography using $\mathrm{Et}_{2} \mathrm{O}$ as eluant to give scutellarein tetramethyl ether (6) (16.3 mg) [6]. Fr. nos $3-5$ gave a residue (4.227 g) which was chromatographed over silica gel (200 g) with $\mathrm{Et}_{2} \mathrm{O}$ as eluant collecting 15 ml fractions. Fr. nos $25-30$ gave a residue (295 mg) which was separated by prep. TLC (solvent: n -hexane- $\mathrm{Et}_{2} \mathrm{O}$ 1:1, developed $3 \times$) to give orthosiphol D (1) (57.9 mg) and orthosiphol E (2) (58.3 mg) as amorphous powders. Fr. nos $32-34$ gave a residue (435 mg) a portion (100 mg) of which was purified by prep. TLC (solvent: n-hexane $\mathrm{Et}_{2} \mathrm{O} 1: 1$, developed $2 \times$; solvent: n -hexane-isopropanol 17:3, developed $3 \times$) to give orthosiphol A (3) (34.4 mg) [11]. Fr. nos $44-54$ gave a residue (249 mg) an aliquot (40 mg) of which was purified by prep. TLC (n-hexane- $\mathrm{Et}_{2} \mathrm{O} 3: 7$ developed $3 \times$ and then developed with $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to give orthosiphol $\mathrm{B}(4)(20 \mathrm{mg})$ [11]. Fr. nos $64-75$ gave a residue (31 mg) which was purified by prep. TLC ($\mathrm{Et}_{2} \mathrm{O}$, developed $2 \times$) to give salvigenin (7) (13.2 mg) [12]. The $\mathrm{Me}_{2} \mathrm{CO}$ washings of the column gave a residue (155 mg), an aliquot of the residue (106 mg) was purified by prep. TLC (benzene-EtOAc 4:1, developed $3 \times$) to give scutellarein tetramethyl ether (6) (56.1 mg) [6] sinensetin (5) (42.2 mg) [8].

The MeOH washings of column I gave a residue $(2.122 \mathrm{~g})$ which was purified by a CC over Toyo pearl (solvent EtOH- $\mathrm{H}_{2} \mathrm{O} 3: 2$) collecting 6 ml fractions. Fr. nos $24-30$ gave a residue (1.20 g), an aliquot (350 mg) of which was further purified by a chromatography over Lobar RP-8 with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (1:1) as an eluant collecting 7 ml fractions. Fr. nos 9-11 gave rosmarinic acid (8) (271 mg) [13]. Among the isolated compounds, known compounds were identified by direct comparison or by comparisons of the spectral data with those reported. The physical properties of the new compounds are as follows.

Orthosiphol D (1). Amorphous powder, $[x]_{D}^{21.6}-96^{\circ}$ (MeOH; c 0.21); UV $\lambda_{\text {max }}^{\mathrm{MeOH}}(\log \varepsilon)$) 231 (4.29); IR $v_{\text {max }}^{\mathrm{CHCl}_{3}}$: $3575,1720,1610,1460,1380,1280,1240-1210,1115$, 1045, 1030 and $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (Table 1); ${ }^{13} \mathrm{C}$ NMR (Table 2); EIMS $m / z 552.2345[\mathrm{M}]^{+} . \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{9}$ requires: 552.2359.

Orthosiphol E (2). Amorphous powder, $[\alpha]_{\mathrm{D}}^{21.6}-99.7^{\circ}$ (MeOH; c 0.47); UV $\lambda_{\max }^{\mathrm{MeOH}}(\log \varepsilon): 231$ (4.15) and 271 (3.55); IR $v_{\text {max }}^{\mathrm{CHCl}_{3}:} 3575,3450,1720,1610,1460,1380,1280$, 1240-1210, 1115, 1050, 1030, $915 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR (Table 1); ${ }^{13} \mathrm{C}$ NMR (Table 2); EIMS $m / z 510.2249$ [M] ${ }^{+}$. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{8}$ requires: 510.2254 .

Acetylation of orthosiphol E (2). Orthosiphol E (2) (7.4 mg) was dissolved in a mixt. of pyridine (0.2 ml) and $\mathrm{Ac}_{2} \mathrm{O}$ and the mixt. was left overnight at room temp. After addition of excess MeOH , the mixt. was concd in vacuo. The residue was purified by prep. TLC (n hexane $-\mathrm{Et}_{2} \mathrm{O} 1: 1$, developed $3 \times$) to give orthosiphol D (1) (3.3 mg). This compound was completely identical with natural orthosiphol D in all respects.

Acknowledgements-The authors thank Professors H. Otsuka and K. Yamasaki of Institute of Pharmaceutical Sciences, Hiroshima University, School of Medicine for generous gifts of rosmarinic acid and Okinawa Branch, Japan Tobacco Inc. for generous gifts of plant material. Thanks are also due to the staff of the Analytical Centre of Faculty of Pharmaceutical Sciences, The University of Tokushima for measurements of NMR and mass spectra.

REFERENCES

1. Goldfiem de Shunck (1938) Presse Med. 52, 1039.
2. Keller, Q. (1934) Archiv. Pharm. 272, 245.
3. Balansard, J. (1952) Prod. Pharm. 7, 457.
4. Modica, G. Di. and Rossi, P. F. (1958) Gazz. Chim. Ital. 88, 737.
5. Casparis, P. and Ferrier, C. (1933) Pharm. Acta Helv. 8, 75.
6. Schneider, G. and Tan, H. S. (1973) Deut. Apoth. Ztg. 113, 201.
7. Wollenweber, E. and Mann, K. (1985) Planta Med. 459.
8. Matsuura, S., Kunii, Y. and Iinuma, M. (1973) Yakugaku Zasshi 93, 1517.
9. Nikonov, G. K. and Savina, A. A. (1971) Farmatsiya (Moscow) 20, 29; Chem. Abstr. (1971) 74, 146298 c.
10. Guerin, J., Reveillere, H., Ducrey, P. and Toupet, L. (1981) J. Nat. Prod. 52, 171.
11. Masuda, T., Masuda, K. and Nakatani, N. (1992) Tetrahedron Letters 33, 945.
12. Ulubelen, A., Ozturk, S. and Isildatici, S. (1968) J. Pharm. Sci. 1037.
13. Rimando, A. M., Inoshiri, S., Otsuka, H., Kohda, H., Yamasaki, K., Padolina, W. G., Torres, L., Quintana, E. G. and Cantoria, M. C. (1987) Shoyakugaku Zasshi 41, 242.
14. Polonsky, J., Baskevitch, Z., Gottlieb, E., Hagaman, E. W. and Wenkert, E. (1975) J. Org. Chem. 40, 2499.

[^0]: *Author to whom correspondence should be addressed.

